Audit of 888 DAO

A report of findings by

Genji Sakamoto

February 21th, 2020

Table of Contents

EXECULIVE SUMMAIYooviiiiii ittt s
Audited SMArt CONTIACESeoviiiiieieieiesie e e
AUIT MEENOT ...
AUGITE FOCUS ...ttt bbbt

CONCIUSION ...t
TYPE OF ISSUES ...

FINAINGS. ¢
B88-TOKEN.SOL.... et

C0ode OPLIMIZALION ..ot
B88-VAUIL.SOL......oveiiiiieiicieee e
TransparenCy and SECUFILYccveieeieiie et

Executive Summary

This audit report has been written to discover issues and vulnerabilities in the
888 DAO smart contracts.

This process included a line by line analysis of the in-scope contracts,
optimization analysis, analysis of key functionalities and limiters, and
reference against intended functionality.

Audited smart contracts

e 888-token.sol
e 888-vault.sol

Audit Method

e Static analysis based on source.
e Dynamic analysis by testing deployed ones on BSC main net.

Audit Focus

e Contract logic.

e Vulnerabilities for common and uncommon attacks
e (Gas optimization

e Validation for variable limiters

e Transparency for all users.

Conclusion

While auditing the smart contracts for 888 DAQ project, | realized that the
idea is very interesting that could attract many users in near future once
deployed.

The logic is some tricky and some complex, but the whole flow of contracts
meet the specification perfectly, except there are some issues | recommend to
fix before deployment.

Type of Issues

Title Description Issues IS[\)NC
Integer An overflow/underflow happens when
Overflow and | an arithmetic operation reaches the 0
Underflow maximum or minimum size of a type.

Function implementation does not
Function meet the specification, leading to 0
Incorrectness intentional or unintentional

vulnerabilities.

An attacker is able to write to arbitrary
Buffer ; i
Overflow storage locations of a contract ifarray | 0

of out bound happens.

A malicious contract can call back into
Reentrancy the calling contract before the first 0

invocation of the function is finished.
Transaction A race condition vulnerability occurs
Order when code depends on the order of the | 0
Dependence transactions submitted to it.
Timestamp Timestamp can be influenced by 0
Dependence minors to some degree.

Using a fixed outdated compiler
Insecure version or floating pragma can be
Compiler problematic, if there are publicly 0
Version disclosed bugs and issues that affect

the current compiler version used.
Insecure Block attributes are insecure to 0
Randomness generate random numbers, as they can

be influenced by minors to some
degree.

“tx.origin” for
authorization

“tx.origin” should not be used for
authorization. Use “msg.sender”
instead.

Delegate call Calling into untrusted contracts is very
to Untrusted dangerous, the target and arguments
Calling provided must be sanitized.
State Variable | Labeling the visibility explicitly makes
Default it easier to catch incorrect assumptions
Visibility about who can access the variable.
Functions are public by default. A
Function malicious user is able to make
Default unauthorized or unintended state
Visibility changes if a developer forgot to set the
visibility.
o Uninitialized local storage variables
Uninitialized .
. can point to other unexpected storage
Variables i .
variables in the contract.
The assert() function is meant to assert
Assertion invariants. Properly functioning code
Failure should never reach a failing assert
statement.
Deprecated Several functions and operators in
Solidity Solidity are deprecated and should not
Features be used as best practice.
Unused

Variables

Unused variables reduce code quality.

Findings
888-token.sol
Code optimization

The token contract source is perfect. | just recommend to move the same
code of transfer and transferFrom function to _transfer internal function. But

it is not must.

888-vault.sol

The source of vault contract is perfect and works seamlessly.

There are just some small optimization issues but it doesn’t affect to main
flow.

Transparency and Security

- There is not any mint function that somebody would ever use for an
irregular purpose.

