

Audit of 888 DAO

A report of findings by

Genji Sakamoto

February 21th, 2020

1

Table of Contents
Executive Summary .. 2

Audited smart contracts .. 2

Audit Method .. 2

Audit Focus ... 2

Conclusion .. 3

Type of Issues ... 3

Findings... 5

888-token.sol ... 5

Code optimization ... 5

888-vault.sol.. 6

Transparency and Security .. 7

2

Executive Summary

This audit report has been written to discover issues and vulnerabilities in the

888 DAO smart contracts.

This process included a line by line analysis of the in-scope contracts,

optimization analysis, analysis of key functionalities and limiters, and

reference against intended functionality.

Audited smart contracts

 888-token.sol

 888-vault.sol

Audit Method

 Static analysis based on source.

 Dynamic analysis by testing deployed ones on BSC main net.

Audit Focus

 Contract logic.

 Vulnerabilities for common and uncommon attacks

 Gas optimization

 Validation for variable limiters

 Transparency for all users.

3

Conclusion

While auditing the smart contracts for 888 DAO project, I realized that the

idea is very interesting that could attract many users in near future once

deployed.

The logic is some tricky and some complex, but the whole flow of contracts

meet the specification perfectly, except there are some issues I recommend to

fix before deployment.

Type of Issues

Title Description Issues
SWC

ID

Integer

Overflow and

Underflow

An overflow/underflow happens when

an arithmetic operation reaches the

maximum or minimum size of a type.

0
SWC-

101

Function

Incorrectness

Function implementation does not

meet the specification, leading to

intentional or unintentional

vulnerabilities.

0

Buffer

Overflow

An attacker is able to write to arbitrary

storage locations of a contract if array

of out bound happens.

0
SWC-

124

Reentrancy

A malicious contract can call back into

the calling contract before the first

invocation of the function is finished.

0

SWC-

107

Transaction

Order

Dependence

A race condition vulnerability occurs

when code depends on the order of the

transactions submitted to it.

0

SWC-

114

Timestamp

Dependence

Timestamp can be influenced by

minors to some degree.
0

SWC-

116

Insecure

Compiler

Version

Using a fixed outdated compiler

version or floating pragma can be

problematic, if there are publicly

disclosed bugs and issues that affect

the current compiler version used.

0

SWC-

102

SWC-

103

Insecure

Randomness

Block attributes are insecure to

generate random numbers, as they can
0

SWC-

120

4

be influenced by minors to some

degree.

“tx.origin” for

authorization

“tx.origin” should not be used for

authorization. Use “msg.sender”

instead.

0

SWC-

115

Delegate call

to Untrusted

Calling

Calling into untrusted contracts is very

dangerous, the target and arguments

provided must be sanitized.

0

SWC-

112

State Variable

Default

Visibility

Labeling the visibility explicitly makes

it easier to catch incorrect assumptions

about who can access the variable.

0

SWC-

108

Function

Default

Visibility

Functions are public by default. A

malicious user is able to make

unauthorized or unintended state

changes if a developer forgot to set the

visibility.

0

SWC-

100

Uninitialized

Variables

Uninitialized local storage variables

can point to other unexpected storage

variables in the contract.

0

SWC-

109

Assertion

Failure

The assert() function is meant to assert

invariants. Properly functioning code

should never reach a failing assert

statement.

0

SWC-

110

Deprecated

Solidity

Features

Several functions and operators in

Solidity are deprecated and should not

be used as best practice.

0

SWC-

111

Unused

Variables
Unused variables reduce code quality. 0

5

Findings

888-token.sol

Code optimization

The token contract source is perfect. I just recommend to move the same

code of transfer and transferFrom function to _transfer internal function. But

it is not must.

6

888-vault.sol

The source of vault contract is perfect and works seamlessly.

There are just some small optimization issues but it doesn’t affect to main

flow.

7

Transparency and Security

- There is not any mint function that somebody would ever use for an

irregular purpose.

